Permanence, partial survival, extinction, and global attractivity of a nonautonomous harvesting Lotka–Volterra commensalism model incorporating partial closure for the populations
نویسندگان
چکیده
منابع مشابه
Partial Extinction, Permanence, and Global Attractivity in Nonautonomous n-Species Gilpin-Ayala Competitive Systems with Impulses
In 1 , the general nonautonomous n-species Lotka-Volterra competitive systems with impulsive effects are investigated. By using the methods of inequalities estimate and constructing the suitable Liapunov functions, the sufficient conditions on the permanence of whole species and global attractivity of systems are established. In 2 , the authors studied the following general nonautonomous n-spec...
متن کاملPermanence and extinction for a nonautonomous SEIRS epidemic model
In this paper, we study the long-time behavior of a nonautonomous SEIRS epidemic model. We obtain new su cient conditions for the permanence (uniform persistence) and extinction of infectious population of the model. By numerical examples we show that there are cases such that our results improve the previous results obtained in [T. Zhang and Z. Teng, On a nonautonomous SEIRS model in epidemiol...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
?????? Partial Closure ????? ?? ????? ????? ? ??? ??? ?? ???????? ?? ????? ?????????
This article has no abstract.
متن کاملPartial Survival and Extinction of Species in Nonautonomous Lotka-Volterra Systems with Delays
This paper concerns with the principle of competitive exclusion which is extended by Shair Ahmad (1999, Proceedings of the American Mathematical Society 127, 29052910), that is, if the coefficients satisfy certain inequalities, then any solution with positive components at some point will have all of its last n − 1 components tend to zero, while the first one will stabilize at a certain solutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2018
ISSN: 1687-1847
DOI: 10.1186/s13662-018-1662-3